微分中值定理
微分中值定理大家庭中有特别多定理,但是在计算极限时,常用的微分中值定理只有一个:拉格朗日中值定理
拉格朗日中值定理
介绍
如果
f
(
x
)
f(x)
f(x)满足以下条件:
(1) 在闭区间
[
a
,
b
]
[a,b]
[a,b]上连续;
(2) 在开区间
(
a
,
b
)
(a,b)
(a,b)内可导;
则在
(
a
,
b
)
(a,b)
(a,b)内至少存在一点
ξ
\xi
ξ,使得
f
(
b
)
−
f
(
a
)
=
f
′
(
ξ
)
(
b
−
a
)
f(b)-f(a)=f'(\xi)(b-a)
f(b)−f(a)=f′(ξ)(b−a)
此处不予证明(可用罗尔定理构造函数,读者自证不难)
柯西中值定理
柯西中值定理虽然用的少,但是还是需要了解
介绍
如果
f
(
x
)
,
F
(
x
)
f(x),F(x)
f(x),F(x)满足以下条件:
(1) 在闭区间
[
a
,
b
]
[a,b]
[a,b]上连续;
(2) 在开区间
(
a
,
b
)
(a,b)
(a,b)内可导;
则在
(
a
,
b
)
(a,b)
(a,b)内至少存在一点
ξ
\xi
ξ,使得
f
(
b
)
−
f
(
a
)
F
(
b
)
−
F
(
a
)
=
f
′
(
ξ
)
F
′
(
ξ
)
\frac{f(b)-f(a)}{F(b)-F(a)}=\frac{f'(\xi)}{F'(\xi)}
F(b)−F(a)f(b)−f(a)=F′(ξ)f′(ξ)
例题
此专题分为两个部分:拉格朗日中值定理专题
以及强行拉格朗日专题
需要注意的是,这些题目并不一定只有拉格朗日中值定理一种做法,不过在此只讲拉格朗日做法
拉格朗日中值定理专题
简单拉格朗日(一眼拉)
(1)
lim
x
→
0
c
o
s
x
−
c
o
s
(
s
i
n
x
)
x
4
\lim\limits_{x\to 0}\frac{cosx-cos(sinx)}{x^4}
x→0limx4cosx−cos(sinx)
思路:
分子非常显然,可以令
f
(
x
)
=
c
o
s
x
f(x)=cosx
f(x)=cosx,易得
f
′
(
x
)
=
−
s
i
n
x
f'(x)=-sinx
f′(x)=−sinx
由拉格朗日中值定理可得,
∃
ξ
∈
(
x
,
s
i
n
x
)
,
有
f
(
x
)
−
f
(
s
i
n
x
)
=
f
′
(
ξ
)
(
x
−
s
i
n
x
)
\exists\xi\in (x,sinx),有f(x)-f(sinx)=f'(\xi)(x-sinx)
∃ξ∈(x,sinx),有f(x)−f(sinx)=f′(ξ)(x−sinx)
由于
x
<
ξ
<
s
i
n
x
,
有
1
<
ξ
x
<
s
i
n
x
x
x<\xi <sinx,有1<\frac{\xi}x<\frac{sinx}x
x<ξ<sinx,有1<xξ<xsinx,由于
lim
x
→
0
s
i
n
x
x
=
1
\lim\limits_{x\to 0}\frac{sinx}x=1
x→0limxsinx=1,由夹逼定理可知,
ξ
x
=
1
,
ξ
∼
x
\frac{\xi}x=1,\xi\sim x
xξ=1,ξ∼x
注意:
这里并不能由
x
∼
0
,
s
i
n
x
∼
0
x\sim 0,sinx\sim 0
x∼0,sinx∼0,再由夹逼定理得到
ξ
∼
0
\xi\sim 0
ξ∼0,因为有时候
ξ
\xi
ξ和
x
x
x趋向极限的速度不同,就不一定有
ξ
∼
x
\xi\sim x
ξ∼x,因此需要先声明
ξ
\xi
ξ和
x
x
x等价才能用夹逼,如果原先没有这个习惯建议改正一下
解
:
由
拉
格
朗
日
中
值
定
理
原
式
=
lim
x
→
0
−
s
i
n
x
(
x
−
s
i
n
x
)
x
4
=
lim
x
→
0
s
i
n
x
−
x
x
3
=
lim
x
→
0
x
−
1
6
x
3
+
o
(
x
3
)
−
x
x
3
(
泰
勒
展
开
)
=
lim
x
→
0
−
1
6
x
3
x
3
=
−
1
6
\begin{aligned} 解:&由拉格朗日中值定理\\ 原式&=\lim\limits_{x\to 0}\frac{-sinx(x-sinx)}{x^4}\\ &=\lim\limits_{x\to0}\frac{sinx-x}{x^3}\\ &=\lim\limits_{x\to 0}\frac{x-\frac16x^3+o(x^3)-x}{x^3}\ \ (泰勒展开) \\ &=\lim\limits_{x\to 0}\frac{-\frac16x^3}{x^3}\\ &=-\frac16 \end{aligned}
解:原式由拉格朗日中值定理=x→0limx4−sinx(x−sinx)=x→0limx3sinx−x=x→0limx3x−61x3+o(x3)−x (泰勒展开)=x→0limx3−61x3=−61
注意:
泰勒展开时无穷小量
o
(
)
o()
o()一定要记得写!!!
(2)
lim
x
→
+
∞
x
2
[
a
r
c
t
a
n
(
x
+
1
)
−
a
r
c
t
a
n
x
]
\lim\limits_{x\to +\infty}x^2\left[arctan(x+1)-arctanx\right]
x→+∞limx2[arctan(x+1)−arctanx]
思路:
此题也是一眼拉,
f
(
x
)
=
a
r
c
t
a
n
x
,
f
′
(
x
)
=
1
x
2
+
1
f(x)=arctanx,f'(x)=\frac{1}{x^2+1}
f(x)=arctanx,f′(x)=x2+11
由拉格朗日中值定理,
∃
ξ
∈
(
x
,
x
+
1
)
,
f
(
x
+
1
)
−
f
(
x
)
=
f
′
(
ξ
)
(
x
+
1
−
x
)
=
f
′
(
ξ
)
\exists\xi\in(x,x+1),f(x+1)-f(x)=f'(\xi)(x+1-x)=f'(\xi)
∃ξ∈(x,x+1),f(x+1)−f(x)=f′(ξ)(x+1−x)=f′(ξ)
由
x
<
ξ
<
x
+
1
,
1
<
ξ
x
<
1
+
1
x
x<\xi<x+1,1<\frac\xi x<1+\frac1x
x<ξ<x+1,1<xξ<1+x1,由
x
∼
+
∞
,
1
x
∼
0
x\sim+\infty,\frac1x\sim0
x∼+∞,x1∼0,有
ξ
x
=
1
,
ξ
∼
x
\frac\xi x=1,\xi\sim x
xξ=1,ξ∼x
解
:
由
拉
格
朗
日
中
值
定
理
可
得
原
式
=
lim
x
→
+
∞
x
2
1
ξ
2
+
1
=
lim
x
→
+
∞
1
(
ξ
x
)
2
+
1
x
2
=
1
1
+
0
=
1
\begin{aligned} 解:&由拉格朗日中值定理可得\\ 原式&=\lim\limits_{x\to+\infty}x^2\frac{1}{\xi^2+1}\\ &=\lim\limits_{x\to+\infty}\frac{1}{(\frac{\xi}{x})^2+\frac{1}{x^2}}\\ &=\frac{1}{1+0}\\ &=1 \end{aligned}
解:原式由拉格朗日中值定理可得=x→+∞limx2ξ2+11=x→+∞lim(xξ)2+x211=1+01=1
复杂拉格朗日(稍微复杂一些)
(3)
lim
x
→
∞
x
(
e
x
+
a
x
+
b
−
e
x
+
c
x
+
d
)
\lim\limits_{x\to\infty}x(e^{\frac{x+a}{x+b}}-e^{\frac{x+c}{x+d}})
x→∞limx(ex+bx+a−ex+dx+c)
思路:
一眼拉,
f
(
x
)
=
e
x
,
f
′
(
x
)
=
e
x
f(x)=e^x,f'(x)=e^x
f(x)=ex,f′(x)=ex
由拉格朗日中值定理,
∃
ξ
∈
(
x
+
a
x
+
b
,
x
+
c
x
+
d
)
\exists\xi\in(\frac{x+a}{x+b},\frac{x+c}{x+d})
∃ξ∈(x+bx+a,x+dx+c),有
f
(
x
+
a
x
+
b
)
−
f
(
x
+
c
x
+
d
)
=
f
′
(
ξ
)
(
x
+
a
x
+
b
−
x
+
c
x
+
d
)
f(\frac{x+a}{x+b})-f(\frac{x+c}{x+d})=f'(\xi)(\frac{x+a}{x+b}-\frac{x+c}{x+d})
f(x+bx+a)−f(x+dx+c)=f′(ξ)(x+bx+a−x+dx+c)
由
x
+
a
x
+
b
<
ξ
<
x
+
c
x
+
d
由\frac{x+a}{x+b}<\xi<\frac{x+c}{x+d}
由x+bx+a<ξ<x+dx+c,
1
+
a
x
1
+
b
x
<
ξ
<
1
+
c
x
1
+
d
x
\frac{1+\frac ax}{1+\frac bx}<\xi<\frac{1+\frac cx}{1+\frac dx}
1+xb1+xa<ξ<1+xd1+xc,由
x
∼
∞
x\sim\infty
x∼∞,易得
1
<
ξ
<
1
1<\xi<1
1<ξ<1,由夹逼定理得
ξ
∼
1
\xi\sim1
ξ∼1
解
:
由
拉
格
朗
日
中
值
定
理
原
式
=
lim
x
→
∞
x
[
e
ξ
(
x
2
+
(
a
+
d
)
x
+
a
d
−
(
x
2
+
(
b
+
c
)
x
+
b
c
)
x
2
+
(
b
+
d
)
x
+
b
d
)
]
=
lim
x
→
∞
e
[
(
a
−
b
−
c
+
d
)
x
2
+
(
a
d
−
b
c
)
x
x
2
+
(
b
+
d
)
x
+
b
d
]
=
lim
x
→
∞
e
[
(
(
a
−
b
−
c
+
d
)
+
a
d
−
b
c
x
1
+
b
+
d
x
+
b
d
x
2
)
]
=
e
(
a
−
b
−
c
+
d
)
\begin{aligned} 解:&由拉格朗日中值定理\\ 原式&=\lim\limits_{x\to\infty}x\left[e^\xi\left(\frac{x^2+(a+d)x+ad-(x^2+(b+c)x+bc)}{x^2+(b+d)x+bd}\right)\right]\\ &=\lim\limits_{x\to\infty}e\left[\frac{(a-b-c+d)x^2+(ad-bc)x}{x^2+(b+d)x+bd}\right]\\ &=\lim\limits_{x\to\infty}e\left[\left(\frac{(a-b-c+d)+\frac{ad-bc}x}{1+\frac{b+d}x+\frac{bd}{x^2}}\right)\right]\\ &=e(a-b-c+d) \end{aligned}
解:原式由拉格朗日中值定理=x→∞limx[eξ(x2+(b+d)x+bdx2+(a+d)x+ad−(x2+(b+c)x+bc))]=x→∞lime[x2+(b+d)x+bd(a−b−c+d)x2+(ad−bc)x]=x→∞lime[(1+xb+d+x2bd(a−b−c+d)+xad−bc)]=e(a−b−c+d)
(4)
lim
x
→
0
s
i
n
s
i
n
c
o
s
x
−
s
i
n
s
i
n
1
c
o
s
c
o
s
c
o
s
x
−
c
o
s
c
o
s
1
\lim\limits_{x\to 0}\frac{sinsincosx-sinsin1}{coscoscosx-coscos1}
x→0limcoscoscosx−coscos1sinsincosx−sinsin1
思路:
首先我们会发现,分子分母好像都能拉,但是拉格朗日中值定理只能拉一边,那怎么办呢?此时就需要用到柯西中值定理
。
此题分子有两种拉法,第一种是
f
1
(
x
)
=
s
i
n
s
i
n
x
f_1(x)=sinsinx
f1(x)=sinsinx,另一种是
f
2
(
x
)
=
s
i
n
s
i
n
c
o
s
x
f_2(x)=sinsincosx
f2(x)=sinsincosx,由于第二种求导比第一种麻烦,所以留给读者训练。
分母也有两种拉法,第一种是
g
1
(
x
)
=
c
o
s
c
o
s
x
g_1(x)=coscosx
g1(x)=coscosx,另一种是
g
2
(
x
)
=
c
o
s
c
o
s
c
o
s
x
g_2(x)=coscoscosx
g2(x)=coscoscosx,由于第二种求导比第一种麻烦,所以也留给读者训练
f
′
(
x
)
=
c
o
s
s
i
n
x
⋅
c
o
s
x
,
g
′
(
x
)
=
s
i
n
c
o
s
x
⋅
s
i
n
x
f'(x)=cossinx\cdot cosx,g'(x)=sincosx\cdot sinx
f′(x)=cossinx⋅cosx,g′(x)=sincosx⋅sinx
由柯西朗日中值定理,
∃
ξ
∈
(
c
o
s
x
,
1
)
\exists\xi\in(cosx,1)
∃ξ∈(cosx,1),有
f
(
c
o
s
x
)
−
f
(
1
)
g
(
c
o
s
x
)
−
g
(
1
)
=
f
′
(
ξ
)
g
′
(
ξ
)
\frac{f(cosx)-f(1)}{g(cosx)-g(1)}=\frac{f'(\xi)}{g'(\xi)}
g(cosx)−g(1)f(cosx)−f(1)=g′(ξ)f′(ξ)
由
c
o
s
x
<
ξ
<
1
cosx<\xi<1
cosx<ξ<1,
x
∼
0
x\sim 0
x∼0时,
c
o
s
x
∼
1
cosx\sim1
cosx∼1,由夹逼定理可得
ξ
∼
1
\xi\sim1
ξ∼1
解
:
由
柯
西
中
值
定
理
原
式
=
c
o
s
s
i
n
1
⋅
c
o
s
1
s
i
n
c
o
s
1
⋅
s
i
n
1
\begin{aligned} 解:&由柯西中值定理\\ 原式&=\frac{cossin1\cdot cos1}{sincos1\cdot sin1} \end{aligned}
解:原式由柯西中值定理=sincos1⋅sin1cossin1⋅cos1
强行拉格朗日专题
(5)
lim
x
→
0
ln
(
x
+
1
+
x
2
)
−
s
i
n
x
x
a
r
c
t
a
n
x
\lim\limits_{x\to 0}\frac{\ln(x+\sqrt{1+x^2})-sinx}{xarctanx}
x→0limxarctanxln(x+1+x2)−sinx
思路:
此题乍一看,根本不满足拉格朗日的条件,也根本想不到拉格朗日,那么这题怎么做成拉格朗日呢?分子左边是
ln
(
x
+
1
+
x
2
)
\ln{(x+\sqrt{1+x^2})}
ln(x+1+x2),右边是
(
1
+
x
)
(1+x)
(1+x),左右要变成同一函数只需要让右边变成对数即可。
原式可转化为
lim
x
→
0
ln
(
x
+
1
+
x
2
)
−
ln
(
e
s
i
n
x
)
x
a
r
c
t
a
n
x
\lim\limits_{x\to 0}\frac{\ln{(x+\sqrt{1+x^2})-\ln{(e^{sinx})}}}{xarctanx}
x→0limxarctanxln(x+1+x2)−ln(esinx)
f
(
x
)
=
ln
x
,
f
′
(
x
)
=
1
x
f(x)=\ln{x},f'(x)=\frac1x
f(x)=lnx,f′(x)=x1
由拉格朗日中值定理,
∃
ξ
∈
(
x
+
1
+
x
2
,
e
s
i
n
x
)
\exists\xi\in(x+\sqrt{1+x^2},e^{sinx})
∃ξ∈(x+1+x2,esinx),有
f
(
x
+
1
+
x
2
)
−
f
(
e
s
i
n
x
)
=
f
′
(
ξ
)
(
x
+
1
+
x
2
−
e
s
i
n
x
)
f(x+\sqrt{1+x^2})-f(e^{sinx})=f'(\xi)(x+\sqrt{1+x^2}-e^{sinx})
f(x+1+x2)−f(esinx)=f′(ξ)(x+1+x2−esinx)
由
x
+
1
+
x
2
<
ξ
<
e
s
i
n
x
x+\sqrt{1+x^2}<\xi<e^{sinx}
x+1+x2<ξ<esinx,由
x
∼
0
,
x
+
1
+
x
2
∼
1
,
e
s
i
n
x
∼
1
x\sim0,x+\sqrt{1+x^2}\sim1,e^{sinx}\sim1
x∼0,x+1+x2∼1,esinx∼1,由夹逼定理得
ξ
∼
1
\xi\sim1
ξ∼1
解
:
由
拉
格
朗
日
中
值
定
理
原
式
=
lim
x
→
0
1
ξ
(
x
+
1
+
x
2
−
e
s
i
n
x
)
x
2
=
lim
x
→
0
1
+
x
2
−
1
x
2
−
e
s
i
n
x
−
e
x
x
2
−
e
x
−
x
−
1
x
2
=
lim
x
→
0
1
2
x
2
x
2
+
1
6
x
3
x
2
−
1
2
x
2
x
2
=
1
2
+
0
−
1
2
=
0
\begin{aligned} 解:&由拉格朗日中值定理\\ 原式&=\lim\limits_{x\to 0}\frac{\frac1\xi(x+\sqrt{1+x^2}-e^{sinx})}{x^2}\\ &=\lim\limits_{x\to 0}\frac{\sqrt{1+x^2}-1}{x^2}-\frac{e^{sinx}-e^x}{x^2}-\frac{e^x-x-1}{x^2}\\ &=\lim\limits_{x\to 0}\frac{\frac12x^2}{x^2}+\frac{\frac16x^3}{x^2}-\frac{\frac12x^2}{x^2}\\ &=\frac12+0-\frac12\\ &=0 \end{aligned}
解:原式由拉格朗日中值定理=x→0limx2ξ1(x+1+x2−esinx)=x→0limx21+x2−1−x2esinx−ex−x2ex−x−1=x→0limx221x2+x261x3−x221x2=21+0−21=0
结语
中值定理是一门高深的学问,特别是证明题,以后有机会可能也会总结一些证明题的做法qaq